Cancer progression and treatment failure are profoundly influenced by the complex ecosystem of tumors, characterized by extensive cellular heterogeneity and a spatially organized microenvironment. Single-cell sequencing has revealed unprecedented diversity in malignant, immune, and stromal tumor populations, but lacks anatomical context. In contrast, spatial transcriptomics can map gene expression within tissue architecture, but typically at low cellular resolution. Integrative approaches now merge these advantages, enabling precise characterization of clonal dynamics, cellular communication, and the ecological niches that underlie metastasis and therapeutic resistance. This integrative approach provides a multidimensional view of tumor biology, highlighting context-dependent mechanisms of drug vulnerability and immune evasion. In this review, we explore how single-cell and spatial technologies are reshaping our understanding of the cancer ecosystem, integrating these two advanced technologies and advancing our progress toward spatially based precision oncology.
1. Fu Y-C, Liang S-B, Luo M, Wang X-P. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell International. 2025;25(1):103.
2. Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. Journal of hematology & oncology. 2019;12(1):134.
3. Thapliyal AP, Singh P, Pant M, Pant K. Advancements in Multi-omics Integration for Comprehensive Cancer Understanding and Treatment. Advancing Biotechnology: From Science to Therapeutics and Informatics: Technological Advancements in Biosciences and Biotechnology: Springer; 2025.p.195-202.
4. Hu B, Sajid M, Lv R, Liu L, Sun C. A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Frontiers in Immunology. 2022;13:996721.
5. Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, et al. Single-cell sequencing to multi-omics: technologies and applications. Biomarker research. 2024;12(1):110.
6. Xu J, Liao K, Yang X, Wu C, Wu W. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Molecular cancer. 2021;20(1):104.
7. Luo H, Hussain A, Abbas M, Yuan L, Shen Y, Zhang Z, et al. Droplet-based single-cell RNA sequencing: decoding cellular heterogeneity for breakthroughs in cancer, reproduction, and beyond. Journal of Translational Medicine. 2025;23(1):1091.
8. Shi W, Zhang Z, Xu X, Tian Y, Feng L, Huang X, et al. Single-cell and spatial transcriptomics integration: New frontiers in tumor microenvironmen and cellular communication. Frontiers in Immunology. 2025;16:1649468.
9. Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB reports. 2022;55(3):113.
10. Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, et al. Advances in spatial transcriptomics and its applications in cancer research. Molecular Cancer. 2024;23(1):129.
11. Ahmed R, Zaman T, Chowdhury F, Mraiche F, Tariq M, Ahmad IS, et al. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues. International journal of molecular sciences. 2022;23(6):3042.
12. Zhu J, Zhang K, Chen Y, Ge X, Wu J, Xu P, et al. Progress of single-cell RNA sequencing combined with spatial transcriptomics in tumour microenvironment and treatment of pancreatic cancer. Journal of Translational Medicine. 2024;22(1):563.
13. Zhu Z, Jiang L, Ding X. Advancing breast cancer heterogeneity analysis: insights from genomics, transcriptomics and proteomics at bulk and single-cell levels. Cancers. 2023;15(16):4164.
14. Geng Y, Feng J, Huang H, Wang Y, Yi X, Wei S, et al. Single-cell transcriptome analysis of tumor immune microenvironment characteristics in colorectal cancer liver metastasis. Annals of Translational Medicine. 2022;10(21):1170.
15. Yu T-J, Ma D, Liu Y-Y, Xiao Y, Gong Y, Jiang Y-Z, et al. Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Molecular Therapy. 2021;29(7):2350-65.
16. Ho DW-H, Tsui Y-M, Sze KM-F, Chan L-K, Cheung T-T, Lee E, et al. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer letters. 2019;459:176-85.
17. Rosati D, Giordano A. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance. Biochemical Pharmacology. 2022;195:114811.
18. Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Frontiers in immunology. 2020;11:1731.
19. Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science. 2021;371(6532):eabc1944.
20. Peng A, Mao X, Zhong J, Fan S, Hu Y. Single‐cell multi‐omics and its prospective application in cancer biology. Proteomics. 2020;20(13):1900271.
21. Funnell T, O’Flanagan CH, Williams MJ, McPherson A, McKinney S, Kabeer F, et al. Single-cell genomic variation induced by mutational processes in cancer. Nature. 2022;612(7938):106-15.
22. Mir R, Javid J, Ullah MF, Alrdahe S, Altedlawi IA, Mustafa SK, et al. Metabolic reprogramming and functional crosstalk within the tumor microenvironment (TME) and A Multi-omics anticancer approach. Medical Oncology. 2025;42(9):373.
23. Kyrochristos ID, Ziogas DE, Goussia A, Glantzounis GK, Roukos DH. Bulk and single-cell next-generation sequencing: individualizing treatment for colorectal cancer. Cancers. 2019;11(11):1809.
24. Zhang Q. Droplet-Based Microfluidics for High-Throughput Single-Cell Omics Profiling. 2022.
25. Salcher S, Heidegger I, Untergasser G, Fotakis G, Scheiber A, Martowicz A, et al. Comparative analysis of 10X Chromium vs. BD Rhapsody whole transcriptome single-cell sequencing technologies in complex human tissues. Heliyon. 2024;10(7).
26. Jiang P, Zhang Z, Hu Y, Liang Z, Han Y, Li X, et al. Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction. Leukemia. 2022;36(11):2656-68.
27. Chen J, Facchinetti F, Braye F, Yurchenko A, Bigot L, Ponce S, et al. Single-cell DNA-seq depicts clonal evolution of multiple driver alterations in osimertinib-resistant patients. Annals of Oncology. 2022;33(4):434-44.
28. Crespo-García E, Bueno-Costa A, Esteller M. Single-cell analysis of the epitranscriptome: RNA modifications under the microscope. RNA biology. 2024;21(1):304-11.
29. Ferro A, Alaimo S, Micale G, Giorgio L. Single-cell sequencing: a new frontier for personalized medicine.
30. Nayak R, Hasija Y. A hitchhiker's guide to single-cell transcriptomics and data analysis pipelines. Genomics. 2021;113(2):606-19.
31. Haghverdi L, Ludwig LS. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Reports. 2023;18(1):13-25.
32. Adekola P. Multi-Scale Modeling in Cancer Systems Biology: Linking Transcriptomic Landscapes to Clinical Decision-Making. 2025.
33. Jung S. Advances in modeling cellular state dynamics: integrating omics data and predictive techniques. Animal Cells and Systems. 2025;29(1):72-83.
34. Rossi T, Angeli D, Tebaldi M, Fici P, Rossi E, Rocca A, et al. Dissecting molecular heterogeneity of circulating tumor cells (CTCs) from metastatic breast cancer patients through copy number aberration (CNA) and single nucleotide variant (SNV) single cell analysis. Cancers. 2022;14(16):3925.
35. Tian B, Li Q. Single-cell sequencing and its applications in liver cancer. Frontiers in Oncology. 2022;12:857037.
36. Conteduca V, Ku S-Y, Fernandez L, Dago-Rodriquez A, Lee J, Jendrisak A, et al. Circulating tumor cell heterogeneity in neuroendocrine prostate cancer by single cell copy number analysis. NPJ precision oncology. 2021;5(1):76.
37. Wang Z, Yang L, Su X, Wu X, Su R. Single‐cell RNA‐sequencing analysis reveals divergent transcriptome events between platinum‐sensitive and platinum‐resistant high‐grade serous ovarian carcinoma. The Journal of Gene Medicine. 2023;25(10):e3504.
38. Yang C, Yu T, Lin Q. A novel signature based on anoikis associated with BCR-free survival for prostate cancer. Biochemical genetics. 2023;61(6):2496-513.
39. Tomanelli M. Unveiling heterogeneity in neuroblastoma cell-line using single-cell RNA-sequencing. 2025.
40. Shi J, Qiao D, Lv Q, Fan Y, Yu H, Hu G, et al. Integration of single-cell and bulk RNA sequencing to identify unique tumor stem cells and construct novel prognostic markers for assessing ESCA prognosis and drug sensitivity. Frontiers in Oncology. 2025;15:1649877.
41. Muller L, Fauvet F, Chassot C, Angileri F, Coutant A, Dégletagne C, et al. EMT-driven plasticity prospectively increases cell–cell variability to promote therapeutic adaptation in breast cancer. Cancer Cell International. 2025;25(1):32.
42. Liu Z, Zhang Y, Ma N, Yang Y, Ma Y, Wang F, et al. Progenitor-like exhausted SPRY1+ CD8+ T cells potentiate responsiveness to neoadjuvant PD-1 blockade in esophageal squamous cell carcinoma. Cancer Cell. 2023;41(11):1852-70.e9.
43. Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, et al. Mechanisms of T-cell exhaustion in pancreatic cancer. Cancers. 2020;12(8):2274.
44. Gao Y, Shi H, Zhao H, Yao M, He Y, Jiang M, et al. Single‐cell transcriptomics identify TNFRSF1B as a novel T‐cell exhaustion marker for ovarian cancer. Clinical and Translational Medicine. 2023;13(9):e1416.
45. Zhao Q, Shao H, Zhang T. Single-cell RNA sequencing in ovarian cancer: revealing new perspectives in the tumor microenvironment. American Journal of Translational Research. 2024;16(7):3338.
46. Shen J, Ma H, Chen Y, Shen J. ScRNA-seq reveals the correlation between M2 phenotype of tumor-associated macrophages and lymph node metastasis of breast cancer. Oncology Research. 2023;31(6):955.
47. Liu Y, Li M, Fang Z, Gao S, Cheng W, Duan Y, et al. Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer. Cancer Immunology, Immunotherapy. 2024;73(7):117.
48. Zhu Y, Wu X, Zhang Y, Gu J, Zhou R, Guo Z. Single cell transcriptomic analysis reveals tumor immune infiltration by NK cells gene signature in lung adenocarcinoma. Heliyon. 2024;10(13).
49. Lee J-S, Kim HY, Won B, Kang SW, Kim Y-N, Jang H. SEZ6L2 is an important regulator of drug-resistant cells and tumor spheroid cells in lung adenocarcinoma. Biomedicines. 2020;8(11):500.
50. Li C, Lin Y, Zheng H, Zeng H, Xu L, Wu D, et al. Glutamate transporter SLC1A6 promotes resistance to immunotherapy in cancer. Cancer Immunology, Immunotherapy. 2025;74(8):240.
51. Liu Q-L, Zhou H, Zhou Z-G, Chen H-N. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer and Metastasis Reviews. 2023;42(2):575-87.
52. Liu H, Chen M, Hong B, Xiao Y, Chen Q, Qian Y. Single-nucleus RNA sequencing and spatial transcriptomics reveal an immunosuppressive tumor microenvironment related to metastatic dissemination during pancreatic cancer liver metastasis. Theranostics. 2025;15(11):5337.
53. Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, et al. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Medicine. 2022;14(1):93.
54. Zhang X, Hu C, Huang C, Wei Y, Li X, Hu M, et al. Robust acquisition of spatial transcriptional programs in tissues with immunofluorescence-guided laser capture microdissection. Frontiers in Cell and Developmental Biology. 2022;10:853188.
55. Chen X, Song E. The theory of tumor ecosystem. Cancer Communications. 2022;42(7):587-608.
56. An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J, et al. Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy. Frontiers in Immunology. 2024;15:1499301.
57. Liu W, Puri A, Fu D, Chen L, Wang C, Kellis M, et al. Dissecting the tumor microenvironment in response to immune checkpoint inhibitors via single-cell and spatial transcriptomics. Clinical & Experimental Metastasis. 2024;41(4):313-32.
58. Luo H, Wang K, Li B. Integrating single-cell and spatial transcriptomic analysis to unveil heterogeneity in high-grade serous ovarian cancer. Frontiers in Immunology. 2024;15:1420847.
59. Chen T-Y, You L, Hardillo JAU, Chien M-P. Spatial transcriptomic technologies. Cells. 2023;12(16):2042.
60. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463-7.
61. Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, Schapiro D, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nature methods. 2019;16(10):987-90.
62. Koblan LW, Yost KE, Zheng P, Colgan WN, Jones MG, Yang D, et al. High-resolution spatial mapping of cell state and lineage dynamics in vivo with PEtracer. Science. 2025:eadx3800.
63. Liu Y, Dong G, Yu J, Liang P. Integration of single-cell and spatial transcriptomics reveals fibroblast subtypes in hepatocellular carcinoma: spatial distribution, differentiation trajectories, and therapeutic potential. Journal of translational medicine. 2025;23(1):198.
64. Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, et al. Single‐cell and spatial transcriptomics reveal POSTN+ cancer‐associated fibroblasts correlated with immune suppression and tumour progression in non‐small cell lung cancer. Clinical and translational medicine. 2023;13(12):e1515.
65. Jiménez-Santos MJ, García-Martín S, Rubio-Fernández M, Gómez-López G, Al-Shahrour F. Spatial transcriptomics in breast cancer reveals tumour microenvironment-driven drug responses and clonal therapeutic heterogeneity. NAR cancer. 2024;6(4):zcae046.
66. Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nature communications. 2023;14(1):5029.
67. Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annual review of physiology. 2019;81(1):505-34.
68. Zhang Y, Wang W. Advances in tumor subclone formation and mechanisms of growth and invasion. Journal of Translational Medicine. 2025;23(1):461.
69. Xia Y, Sun T, Li G, Li M, Wang D, Su X, et al. Spatial single cell analysis of tumor microenvironment remodeling pattern in primary central nervous system lymphoma. Leukemia. 2023;37(7):1499-510.
70. Melssen MM, Sheybani ND, Leick KM, Slingluff Jr CL. Barriers to immune cell infiltration in tumors. Journal for immunotherapy of cancer. 2023;11(4):e006401.
71. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & molecular immunology. 2020;17(1):27-35.
72. Groen-van Schooten TS, Fernandez RF, van Grieken NC, Bos EN, Seidel J, Saris J, et al. Mapping the complexity and diversity of tertiary lymphoid structures in primary and peritoneal metastatic gastric cancer. Journal for Immunotherapy of Cancer. 2024;12(7):e009243.
73. Cohn DE, Forder A, Marshall EA, Vucic EA, Stewart GL, Noureddine K, et al. Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging. Frontiers in Immunology. 2023;14:1275890.
74. Wang F, Long J, Li L, Wu Z-X, Da T-T, Wang X-Q, et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Science advances. 2023;9(24):eadf5464.
75. Nagasawa S, Kashima Y, Suzuki A, Suzuki Y. Single-cell and spatial analyses of cancer cells: toward elucidating the molecular mechanisms of clonal evolution and drug resistance acquisition. Inflammation and Regeneration. 2021;41(1):22.
76. Yu X, Wang J, Wang P, Liu X, Li C, Ju Y, et al. Single-cell and spatial transcriptomic analyses deciphering the three-layer architecture of human tuberculosis granulomas. bioRxiv. 2024:2024.07.15.603490.