Article detail
Review Article | Open Access 2025;2(1):14-26 | https://doi.org/10.58832/ctr.2025.6.6.2
Targeting the glycolytic switch in cancer: mechanisms, cancer progression and therapeutic challenges
Torsten Lundberg 1 , Sigurd Lindholm 1,* 1Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden * Address for Correspondences:
Sigurd Lindholm
Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
E-mail: sigurdlindholm@tutamail.com
Running Title: Glycolytic switch in cancer
Received 23 March 2025
Revised 14 May 2025
Accepted 20 May 2025
Published Online 115 June 2025
Keywords: Glycolytic reprogramming; Cancer; Tumor microenvironment; Therapeutic; Metabolic plasticity
Abstract

The Warburg effect, characterized by aerobic glycolysis in cancer cells, represents a metabolic reprogramming mechanism that is critical for sustaining tumorigenesis. In addition to its association with mitochondrial dysfunction, this phenomenon is now recognized as an oncogene-driven adaptation that promotes rapid ATP production, biomass accumulation, and microenvironmental remodeling. Central to glycolytic reprogramming are dysregulated rate-limiting enzymes (including HK2, PFK1/PFKFB3, PKM2, and LDHA), whose activities are regulated by transcriptional networks (e.g. HIF-1α, MYC), post-translational modifications, and isoform switching. Together, these enzymes divert glycolytic intermediates toward anabolic pathways while maintaining redox balance under hypoxic conditions. Tumor progression is further promoted by lactate-mediated extracellular acidification, which reshapes the tumor microenvironment (TME) to promote immunosuppression, angiogenesis, and metastatic dissemination. Glycolytic metabolites also orchestrate epigenetic reprogramming through histone lactylation, forming a feed-forward loop that consolidates the malignant phenotype. Despite advances in therapeutic efforts targeting glycolytic enzymes, challenges remain due to metabolic plasticity, activation of compensatory pathways, and on-target toxicity in normal tissues. Emerging strategies combining glycolytic inhibitors with immunotherapies or microenvironmental modulators have shown promise in preclinical models, but tumor heterogeneity and dynamic metabolic crosstalk still hinder clinical translation. This review synthesizes the mechanistic basis of glycolytic reprogramming, its multifaceted roles in malignancies, and translational barriers that impede therapeutic innovation.

Reference

1. Yan L, Raj P, Yao W, Ying H. Glucose metabolism in pancreatic cancer. Cancers. 2019;11(10):1460.

2. Ediriweera MK, Jayasena S. The role of reprogrammed glucose metabolism in cancer. Metabolites. 2023;13(3):345.

3. Spencer NY, Stanton RC, editors. The Warburg effect, lactate, and nearly a century of trying to cure cancer. Seminars in nephrology; 2019: Elsevier.

4. Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative roles of metabolic plasticity caused by mitochondrial oxidative phosphorylation and glycolysis on the initiation and progression of tumorigenesis. International Journal of Molecular Sciences. 2023;24(8):7076.

5. Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic reprogramming in the hepatocellular carcinoma microenvironment: cause and effect. Cancer Management and Research. 2020:5957-74.

6. Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Communications. 2022;42(11):1049-82.

7. Sun F, Li W, Du R, Liu M, Cheng Y, Ma J, et al. Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Communication and Signaling. 2025;23(1):44.

8. Crispo F, Condelli V, Lepore S, Notarangelo T, Sgambato A, Esposito F, et al. Metabolic dysregulations and epigenetics: a bidirectional interplay that drives tumor progression. Cells. 2019;8(8):798.

9. Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Frontiers in Pharmacology. 2023;14:1242955.

10. Afonso J, Gonçalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A, et al. Glucose metabolism reprogramming in bladder cancer: hexokinase 2 (HK2) as prognostic biomarker and target for bladder cancer therapy. Cancers. 2023;15(3):982.

11. Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R, editors. GLUT and HK: two primary and essential key players in tumor glycolysis. Seminars in cancer biology; 2024: Elsevier.

12. Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules. 2023;29(1):75.

13. Zhu X, Du J, Gu Z. Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma. Molecular and Cellular Biochemistry. 2020;474(1):147-58.

14. Icard P, Coquerel A, Wu Z, Gligorov J, Fuks D, Fournel L, et al. Understanding the central role of citrate in the metabolism of cancer cells and tumors: an update. International journal of molecular sciences. 2021;22(12):6587.

15. Tian R-F, Li X-F, Xu C, Wu H, Liu L, Wang L-H, et al. SiRNA targeting PFK1 inhibits proliferation and migration and enhances radiosensitivity by suppressing glycolysis in colorectal cancer. American journal of translational research. 2020;12(9):4923.

16. Kashyap A, Umar SM, Dev JR A, Mathur SR, Gogia A, Batra A, et al. Combination of 3PO analog PFK15 and siPFKL efficiently suppresses the migration, colony formation ability, and PFK‐1 activity of triple‐negative breast cancers by reducing the glycolysis. Journal of Cellular Biochemistry. 2023;124(9):1259-72.

17. Li J, Zhang S, Liao D, Zhang Q, Chen C, Yang X, et al. Overexpression of PFKFB3 promotes cell glycolysis and proliferation in renal cell carcinoma. BMC cancer. 2022;22(1):83.

18. Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, et al. Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers. 2021;13(4):909.

19. Xing J, Jia Z, Xu Y, Chen M, Yang Z, Chen Y, et al. KLF9 (Kruppel Like Factor 9) induced PFKFB3 (6-Phosphofructo-2-Kinase/Fructose-2, 6-Biphosphatase 3) downregulation inhibits the proliferation, metastasis and aerobic glycolysis of cutaneous squamous cell carcinoma cells. Bioengineered. 2021;12(1):7563-76.

20. Ishfaq M, Bashir N, Riaz SK, Manzoor S, Khan JS, Bibi Y, et al. Expression of HK2, PKM2, and PFKM is associated with metastasis and late disease onset in breast cancer patients. Genes. 2022;13(3):549.

21. Ren J, Li W, Pan G, Huang F, Yang J, Zhang H, et al. miR‐142‐3p modulates cell invasion and migration via PKM2‐mediated aerobic glycolysis in colorectal cancer. Analytical cellular pathology. 2021;2021(1):9927720.

22. Du L, Dou K, Zhang D, Xia H, Liang N, Wang N, et al. MiR-19a-3p Promotes Aerobic Glycolysis in Ovarian Cancer Cells via IGFBP3/PI3K/AKT Pathway. Folia Biologica. 2023;69(5/6):163-72.

23. Yu Y, Liang Y, Xie F, Zhang Z, Zhang P, Zhao X, et al. Tumor-associated macrophage enhances PD-L1-mediated immune escape of bladder cancer through PKM2 dimer-STAT3 complex nuclear translocation. Cancer Letters. 2024;593:216964.

24. Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers. 2019;11(6):750.

25. Wang Q, Fan W, Liang B, Hou B, Jiang Z, Li C. YY1 transcription factor induces proliferation and aerobic glycolysis of neuroblastoma cells via LDHA regulation. Experimental and Therapeutic Medicine. 2022;25(1):37.

26. Naik A, Decock J. Lactate metabolism and immune modulation in breast cancer: a focused review on triple negative breast tumors. Frontiers in Oncology. 2020;10:598626.

27. Otto AM. Small is beautiful–a glycolytic metabolite signals mTORC1 activation in cancer cell metabolism. Signal transduction and targeted therapy. 2020;5(1):259.

28. Liu P, Sun S-J, Ai Y-J, Feng X, Zheng Y-M, Gao Y, et al. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death & Disease. 2022;13(3):205.

29. Duan Y, Li J, Wang F, Wei J, Yang Z, Sun M, et al. Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Reports. 2021;37(12).

30. Bonanomi M, Salmistraro N, Fiscon G, Conte F, Paci P, Bravatà V, et al. Transcriptomics and metabolomics integration reveals redox-dependent metabolic rewiring in breast cancer cells. Cancers. 2021;13(20):5058.

31. Yang R, Zhang G, Dong Z, Wang S, Li Y, Lian F, et al. Homeobox A3 and KDM6A cooperate in transcriptional control of aerobic glycolysis and glioblastoma progression. Neuro-oncology. 2023;25(4):635-47.

32. Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic heterogeneity of cancer cells: an interplay between HIF-1, GLUTs, and AMPK. Cancers. 2020;12(4):862.

33. Vallée A, Lecarpentier Y, Vallée J-N. The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers. 2021;13(21):5557.

34. Tang Y, Li W, Qiu L, Zhang X, Zhang L, Miyagishi M, et al. The p52-ZER6/G6PD axis alters aerobic glycolysis and promotes tumor progression by activating the pentose phosphate pathway. Oncogenesis. 2023;12(1):17.

35. Miranda-Galvis M, Teng Y. Targeting hypoxia-driven metabolic reprogramming to constrain tumor progression and metastasis. International journal of molecular sciences. 2020;21(15):5487.

36. Singh L, Nair L, Kumar D, Arora MK, Bajaj S, Gadewar M, et al. Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival. Frontiers in Oncology. 2023;13:1034205.

37. Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, et al. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Frontiers in nutrition. 2023;10:1113739.

38. Tao H, Zhong X, Zeng A, Song L. Unveiling the veil of lactate in tumor-associated macrophages: a successful strategy for immunometabolic therapy. Frontiers in Immunology. 2023;14:1208870.

39. Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology. 2021;22(1):22-38.

40. Gorski T, De Bock K. Metabolic regulation of exercise-induced angiogenesis. Vascular Biology. 2019;1(1):H1-H8.

41. Chetta P, Sriram R, Zadra G. Lactate as key metabolite in prostate cancer progression: what are the clinical implications? Cancers. 2023;15(13):3473.

42. Hao Z-N, Tan X-P, Zhang Q, Li J, Xia R, Ma Z. Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy. Biomolecules. 2024;14(12):1646.

43. Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2024:189164.

44. Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, et al. Glucose metabolism and tumour microenvironment in pancreatic cancer: a key link in cancer progression. Frontiers in Immunology. 2022;13:1038650.

45. Iozzo M. Lactate and tumor microenvironment: how prostate cancer and melanoma rely on this oncometabolite. 2023.

46. Lin J, Fang W, Xiang Z, Wang Q, Cheng H, Chen S, et al. Glycolytic enzyme HK2 promotes PD-L1 expression and breast cancer cell immune evasion. Frontiers in Immunology. 2023;14:1189953.

47. Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine & Growth Factor Reviews. 2023;73:78-92.

48. Demkow U. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers. 2021;13(17):4495.

49. Bhardwaj V, He J. Reactive oxygen species, metabolic plasticity, and drug resistance in cancer. International journal of molecular sciences. 2020;21(10):3412.

50. Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51.

51. Arundhathi JD, Mathur SR, Gogia A, Deo S, Mohapatra P, Prasad CP. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Molecular Biology Reports. 2021;48(5):4733-45.

52. Papadaki C, Manolakou S, Lagoudaki E, Pontikakis S, Ierodiakonou D, Vogiatzoglou K, et al. Correlation of PKM2 and CD44 protein expression with poor prognosis in platinum-treated epithelial ovarian cancer: a retrospective study. Cancers. 2020;12(4):1013.

53. Fan Y, Ou L, Fan J, Li L, Wang X, Niu L, et al. PLCε regulates metabolism and metastasis signaling via HIF‐1α/MEK/ERK pathway in prostate cancer. Journal of Cellular Physiology. 2020;235(11):8546-57.

54. Wang EJ-Y, Chen I-H, Kuo BY-T, Yu C-C, Lai M-T, Lin J-T, et al. Alterations of cytoskeleton networks in cell fate determination and cancer development. Biomolecules. 2022;12(12):1862.

55. Xu L, Sun J, Guo J, Guo S, Li J, Tang Y, et al. Transcriptional factor KLF9 overcomes 5-fluorouracil resistance in breast cancer via PTEN-dependent regulation of aerobic glycolysis. Journal of Chemotherapy. 2024:1-12.

56. Zhuang L, Zhang B, Liu X, Lin L, Wang L, Hong Z, et al. Exosomal miR‐21‐5p derived from cisplatin‐resistant SKOV3 ovarian cancer cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Cell Biology International. 2021;45(10):2140-9.

57. Wang C, Shi Z-Z. Exosomes in esophageal cancer: function and therapeutic prospects. Medical Oncology. 2024;42(1):18.

58. Zhu Y, Li F, Wan Y, Liang H, Li S, Peng B, et al. Cancer-secreted exosomal MiR-620 inhibits ESCC aerobic glycolysis via FOXM1/HER2 pathway and promotes metastasis. Frontiers in Oncology. 2022;12:756109.

59. Zhang Y, Zhao L, Yang S, Cen Y, Zhu T, Wang L, et al. CircCDKN2B-AS1 interacts with IMP3 to stabilize hexokinase 2 mRNA and facilitate cervical squamous cell carcinoma aerobic glycolysis progression. Journal of experimental & clinical cancer research. 2020;39:1-18.

60. Kawatani M, Aono H, Hiranuma S, Shimizu T, Muroi M, Ogawa N, et al. Identification of a small-molecule glucose transporter inhibitor, glutipyran, that inhibits cancer cell growth. ACS Chemical Biology. 2021;16(8):1576-86.

61. JIAJUN C, HAR YP, NG ZX. Research Progress on the Antitumor Mechanism of Penfluridol. Medicine. 2024;4(2).

62. Wang L, Yang Q, Peng S, Liu X. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. OncoTargets and therapy. 2019:5359-73.

63. Fujita M, Imadome K, Somasundaram V, Kawanishi M, Karasawa K, Wink DA. Metabolic characterization of aggressive breast cancer cells exhibiting invasive phenotype: impact of non-cytotoxic doses of 2-DG on diminishing invasiveness. BMC cancer. 2020;20:1-13.

64. Qi C-L, Huang M-L, Zou Y, Yang R, Jiang Y, Sheng J-F, et al. The IRF2/CENP-N/AKT signaling axis promotes proliferation, cell cycling and apoptosis resistance in nasopharyngeal carcinoma cells by increasing aerobic glycolysis. Journal of Experimental & Clinical Cancer Research. 2021;40(1):390.

65. Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Frontiers in Oncology. 2022;12:1036477.

66. Fu B, Hu J, Yu A, Wang Y. Therapeutic nanovaccines reshape the metabolic and immune microenvironment for enhancing immunotherapy of primary and lymphatic metastatic tumors. Advanced Functional Materials. 2024;34(12):2307823.

67. Goetzman ES, Prochownik EV. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Frontiers in endocrinology. 2018;9:129.

68. Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Frontiers in oncology. 2017;7:68.

69. Reece AS, Wang W, Hulse GK. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Medical hypotheses. 2018;116:10-21.

70. Marczyk M, Gunasekharan V, Casadevall D, Qing T, Foldi J, Sehgal R, et al. Comprehensive analysis of metabolic isozyme targets in cancer. Cancer research. 2022;82(9):1698-711.

71. Hamdy NM, Eskander G, Basalious EB. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. International Journal of Nanomedicine. 2022;17:6131.

Date 2025.6