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Abstract
 
Cardiovascular and cerebrovascular diseases (CVD) encompass a range of conditions 

affecting the heart, brain, and blood vessels, including coronary heart disease, 

hypertension, and stroke. In recent years, there has been growing evidence 

highlighting the significant role of non-coding RNAs (ncRNAs) in the development 

and progression of cardiovascular diseases. Among the various types of ncRNAs, 

long-stranded non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have 

emerged as prominent players in cardiovascular research. Advancements in 

technology and in-depth research have revealed that ncRNAs and circRNAs exert 

regulatory effects on the biological functions of the cardiovascular system through 

various pathways. For instance, they can modulate the proliferation, migration, and 

apoptosis of vascular endothelial cells, as well as regulate cardiac muscle contraction 

and cardiomyocyte apoptosis. Additionally, ncRNAs and circRNAs can influence 

downstream targets and pathways involved in cardiovascular diseases. The 

exploration of ncRNAs and circRNAs in cardiovascular research has opened up new 

avenues for the diagnosis and treatment of CVDs. By understanding the intricate 

regulatory mechanisms mediated by these non-coding RNAs, researchers have 

gained valuable insights into the pathogenesis of cardiovascular diseases and 

identified potential therapeutic targets. Consequently, these studies have provided 

novel ideas and approaches for the diagnosis, prevention, and management of CVDs.



Sparkling publishing group 02

KEYWORDS 

Cardiovascular and cerebrovascular diseases; LncRNA; CircRNA; Clinical 

implications; Review

Introduction
 
Cardiovascular and cerebrovascular diseases (CVD) are 

prevalent conditions caused by atherosclerosis and a 

combination of risk factors, including high blood pressure, 

blood viscosity, smoking, diabetes, alcoholism, obesity, and 

genetic predisposition. These diseases pose a significant 

threat to human health and are characterized by their high 

prevalence, mortality, and death rates[1, 2]. Globally, CVD 

accounts for the highest number of deaths, with 

approximately 15 million fatalities reported each year[3]. 

Common CVD conditions include hypertension, coronary 

heart disease, atrial fibrillation, heart failure, atherosclerosis, 

and stroke[4]. Other conditions such as aneurysms, 

cardiomyopathy, and pericarditis are also encompassed within 

the scope of CVD[5]. Among these, coronary heart disease 

and stroke are particularly common and pose greater risks[6]. 

With advancements in technology and medical techniques, 

the prevention and treatment of CVD have seen 

improvements and updates. Strategies such as exercise, 

dietary modifications, and drug therapies have been 

developed to address these conditions[7, 8]. Additionally, 

interventions targeting high-risk groups have gained 

attention and recognition. 

 
 
Non-coding RNA (ncRNA) refers to a group of endogenous 

small RNA molecules that do not encode proteins but play 

important regulatory roles in post-transcriptional processes[9, 

10]. This category includes long non-coding RNAs (lncRNAs), 

circular RNAs (circRNAs), and other types of ncRNAs, all of 

which are closely associated with the regulation of various 

cardiovascular pathophysiological functions and the 

development of diseases[11]. LncRNAs, in particular, 

represent 80%-90% of all ncRNAs and are found widely in 

animals, plants, yeast, and even viruses[12, 13]. Figure 1 

illustrates the diverse functions of lncRNAs. One of the key 

roles of lncRNAs is acting as a microRNA (miRNA) sponge, 

regulating the expression of target genes by sequestering 

miRNAs[14, 15]. Additionally, lncRNAs can interact with 

proteins, influencing their activities. They can serve as 

structural components, forming nucleic acid-protein 

complexes that bind to gene promoter regions, thereby 

controlling gene transcription and repressing the expression 

of adjacent protein-coding genes[16]. LncRNAs can also 

modulate gene expression by inhibiting RNA polymerase II or 

mediating chromatin remodeling and histone 

modifications[17]. Moreover, lncRNAs can generate 

complementary double strands with transcripts of 

protein-coding genes, interfering with mRNA splicing and 

producing various splicing variants[18]. Another mechanism 

by which lncRNAs regulate gene expression is by forming 

complementary double strands with transcripts of 

protein-coding genes and generating endogenous small 

interfering RNAs (siRNAs) under the action of the Dicer 

enzyme[19]. Furthermore, lncRNAs may interact with specific 

proteins and modify their subcellular localization[20]. The 

advancement of sequencing technology has facilitated 

numerous studies that have demonstrated the potential of 

targeting lncRNA expression to improve various diseases, 

including coronary heart disease, heart failure, and 

hypertension. LncRNAs may also serve as biomarkers for the 

diagnosis and prognosis of cardiovascular diseases[21, 22]. 
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Circular RNA (circRNA) is a type of non-coding RNA that forms 

a closed circular structure without a 5' cap and a 3' poly(A) 

structure[23] (Figure 2). CircRNAs are primarily located in the 

cytoplasm, with some also present in the nucleus, and they 

exhibit characteristics such as tissue specificity and 

stability[24, 25]. These molecules possess various biological 

activities, including acting as miRNA sponges to competitively 

bind and sequester miRNAs, thereby indirectly regulating the 

expression of downstream target genes (Figure 3a)[26]. 

CircRNAs can also interact with RNA-binding proteins (RBPs) 

to influence mRNA splicing patterns or mRNA stability (Figure 

3b)[27]. Furthermore, circRNAs and ElcircRNAs can bind to 

small ribonucleoproteins, influencing transcription by 

interacting with RNA polymerase II (Figure 3c)[28]. Certain 

circRNAs have been found to be capable of translation by 

ribosomes, leading to the production of functional 

polypeptides involved in regulatory processes (Figure 3d)[29]. 

Numerous studies have demonstrated that dysregulated 

expression of circRNAs plays a significant role in the 

development of cardiovascular diseases[30, 31]. For instance, 

circEsyt2 was found to be highly expressed in mouse 

atherosclerotic plaques and neointima during vascular 

remodeling. Knockdown of circEsyt2 resulted in inhibited 

proliferation and migration of vascular smooth muscle cells 

(VSMCs), as well as increased cell apoptosis[32]. Additionally, 

circRNAs have been implicated in various pathological 

processes of cardiovascular diseases, including cardiac 

apoptosis, cardiac hypertrophy, and myocardial fibrosis[33, 

34]. In cerebrovascular diseases, circRNAs can regulate 

vascular endothelial cell function and impact cerebrovascular 

permeability and stability[35, 36]. Moreover, circRNAs have 

been implicated in the development and progression of 

hematological diseases, as well as in cell proliferation, 

migration, and apoptosis in the vascular wall[37, 38].

Sparkling publishing group

CLINICAL AND TRANSLATIONAL REPORTS DOI 10.58832/ctr.2023.7.6.1

FIGURE 1 
Mechanism of lncRNA functions.
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FIGURE 2 
Schematic diagram of the structure of circRNA.

FIGURE 3 
Regulatory mechanisms of circRNAs.
a. miRNA sponge. b. Regulation of protein binding. c. Regulates gene transcription. d. Encodes a function.
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This review paper provides a comprehensive overview of the 

current research status pertaining to lncRNA and circRNA in 

the context of cardiovascular diseases. It highlights the 

significant roles played by lncRNAs and circRNAs in the 

diagnosis, treatment, and drug development of cardiovascular 

diseases, and discusses their potential as promising tools for 

developing novel therapeutic strategies in clinical settings.

 

 Hypertension 
Hypertension is a chronic condition characterized by elevated 

systemic arterial blood pressure, leading to functional or 

structural damage in organs such as the heart, brain, and 

kidneys[39, 40]. It is considered a major risk factor for 

cardiovascular diseases, including heart disease, stroke, and 

kidney disease[41, 42]. Recent studies have highlighted the 

regulatory role of lncRNA in the pathogenesis of hypertension, 

particularly in processes such as myocardial cell growth and 

differentiation, cell apoptosis and autophagy, and extracellular 

matrix synthesis and degradation. These processes are closely 

associated with the development and progression of 

hypertension [22, 43]. For instance, increased expression of 

MALAT1 has been observed in hypertension rat models and is 

linked to vascular smooth muscle cell proliferation and 

vascular remodeling[44, 45]. Conversely, H19 has been found 

to be downregulated in rat models, exerting a protective 

effect by modulating the p53 signaling pathway, suppressing 

cell proliferation, and attenuating vascular remodeling[37]. 

GAS5 has been identified as a key regulator of hypertension, 

modulating endothelial and vascular smooth muscle cell 

function through the β-catenin signaling pathway[46, 47]. 

Furthermore, studies conducted on the Chinese Han 

population have demonstrated a significant correlation 

between the expression level of CDKN2B-AS1 and the 

prevalence of hypertension[48], and single nucleotide 

polymorphisms in CDKN2B-AS1 have been associated with 

susceptibility to hypertension[49]. These findings highlight 

the involvement of lncRNAs in the pathogenesis of 

hypertension and offer potential targets for therapeutic 

interventions in the management of this condition.

The expression levels of circRNA have been found to be 

closely associated with the clinical manifestations and 

prognosis of hypertension[50]. Several studies have 

demonstrated the potential of circRNAs as biomarkers for 

hypertension[51, 52]. For instance, upregulated circ_0000284 

has been identified as an independent risk factor for 

hypertension and has shown high diagnostic accuracy in 

clinical models[53]. Bioinformatics analysis has revealed that 

hsa_circ_0037897 may also serve as a risk factor for essential 

hypertension[54]. Additionally, five circRNAs, namely 

hsa_circ_0105130, hsa_circ_0109569, hsa_circ_0072659, 

hsa_circ_0079586, and hsa_circ_0064684, have been identified 

as being associated with essential hypertension[55]. Other 

circRNAs such as hsa_circ_0126991, hsa_circ_0014243, and 

hsa_circ_0037909 have also been recognized as potential 

biomarkers for essential hypertension[51, 56, 57]. 

Mechanistically, circRNAs can impact cardiovascular function 

by regulating the expression of transcription factors, 

microRNAs, and proteins, thereby influencing the 

development and progression of hypertension[58, 59]. For 

example, downregulated circ_0037078 has been found to 

promote the growth and angiogenesis of trophoblast cells 

through the miR-576-5p/IL1RAP axis, offering new insights 

into the understanding of pre-eclampsia, a common 

hypertensive disorder induced by pregnancy[60]. These 

findings highlight the significance of circRNAs in the 

pathophysiology of hypertension and suggest their potential 

utility as diagnostic biomarkers and therapeutic targets for 

this condition.

Coronary artery disease (CAD) 
CAD is a complex cardiovascular disease characterized by the 

narrowing or blockage of coronary arteries. Its etiology 

involves various factors[61, 62]. LINC00657 has been 

identified as closely associated with the development of CAD. 

Overexpression of LINC00657 has been found to promote 

CAD progression, while downregulation of its expression 

reduces ischemia/reperfusion injury in the heart[22, 63]. 

ANRIL is involved in CAD progression through multiple 

Sparkling publishing group
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mechanisms, including gene expression regulation, 

interference with the cell cycle, and apoptosis regulation. Guo 

F et al. have demonstrated the diagnostic potential of ANRIL 

in CAD when used in conjunction with miR-181b and the 

NF-κB signaling pathway[64]. The lncRNA H19, a commonly 

studied lncRNA, also plays a significant role in CAD[65]. 

Overexpressed H19 can promote apoptosis and myocardial 

fibrosis, thus accelerating the progression of coronary heart 

disease[66]. MIAT, another well-studied lncRNA, affects the 

growth, differentiation, and apoptosis of cardiomyocytes, 

influencing CAD progression through pathways involving 

inflammatory response and oxidative stress. MIAT can serve 

as a predictive marker for CAD[67]. HOTAIR, as described in 

the literature by Kim IJ et al., acts as an antagonist of 

cardiovascular disease by targeting miR-1 and miR-125 to 

inhibit apoptosis and regulate downstream genes, thereby 

preventing acute myocardial ischemia[68]. Additionally, other 

lncRNAs such as TONSL-AS1, which is downregulated in CAD, 

are associated with poor patient prognosis[69]. The low 

expression of CASC11, another lncRNA, is also linked to 

higher mortality in CAD patients[70, 71]. These findings 

underscore the significant roles of various lncRNAs in the 

pathogenesis of CAD and highlight their potential as 

diagnostic markers and therapeutic targets. 

Several studies have highlighted the important role of 

circRNAs in CAD. For instance, circRNA_010567 has been 

implicated in regulating the development and progression of 

CAD through the miR-141-3p/FOXP1 signaling pathway[72]. 

CircRNA_000203 expression levels not only impact the 

development and severity of CAD but also influence its 

progression by modulating gene expression, cell cycle, and 

apoptosis[73]. Overexpression of circRNA_000284 

exacerbates myocardial ischemia/reperfusion injury, whereas 

its downregulation reduces such injury[74]. Hsa_circ_0124644 

has been validated as a diagnostic marker for coronary heart 

disease, and its diagnostic efficacy increases when combined 

with hsa_circ_0098964[75]. Through cellular experiments, 

Zhou H et al. demonstrated that BTBD7_hsa_circ_0000563 

may participate in CAD regulation, making it a potential novel 

diagnostic target for CAD[76]. Additionally, a review by 

Zhang S et al. summarized the regulatory roles of various 

circRNAs in CAD, including circSATB2, circRuSc2, circNFIB, 

circTtc3, circNCX1, and circFndc3b, as depicted in Figure 

4[77]. These findings provide insights into the involvement of 

circRNAs in CAD pathogenesis and underscore their potential 

as diagnostic markers and therapeutic targets.

Atrial fibrillation (AF) 
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia characterized by rapid and irregular contractions of the atria

Sparkling publishing group
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FIGURE 4 
Some circRNAs associated with the pathogenesis of CAD.
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[78, 79]. LncRNAs have been shown to influence the onset and 

progression of AF by regulating various cellular processes, 

including the cell cycle, apoptosis, ion channels, and other 

pathways[80]. For instance, the lncRNA LICPAR has been 

identified as a promoter of AF development through its 

regulation of the TGF-β/Smad signaling pathway[81]. 

Additionally, increased expression of MALAT1 has been 

observed in AF patients and is implicated in the development 

of AF by modulating apoptosis and cardiomyocyte superoxide 

dismutase expression, among other mechanisms[82]. Another 

lncRNA, ANRIL, which is associated with cardiovascular 

disease, exhibits upregulated expression in AF patients and 

can influence the onset and progression of AF by affecting the 

expression of ion channels, among other pathways[83, 84]. 

Conversely, FENDRR expression levels are significantly 

down-regulated in AF patients, and its overexpression has 

been found to substantially inhibit AF development[85]. In a 

study by Xie L et al., AF-related lncRNAs were analyzed using 

bioinformatics techniques, revealing a negative association 

between LINC00844 and resting dendritic cells, the ability of 

certain lncRNAs to suppress CD8+ T cells to enhance drug 

resistance, and the impact of differentially expressed lncRNAs 

on AF through immune and inflammatory signaling pathways

[86]. Moreover, Dai H et al. demonstrated that the lncRNA 

NEAT1 negatively regulates the expression of miR-320-NPAS2 

in cardiac fibroblasts, which not only exerts a significant 

influence on atrial fibrosis but also represents a potential 

target for the treatment of AF[87]. 

Recent studies have highlighted the significant role of circular 

RNAs (circRNAs) in the development and progression of AF

[88]. For instance, Ruan ZB et al. conducted an analysis 

revealing that the hsa-miR-328 co-expression network is 

associated with the pathophysiology and pathogenesis of AF

[89]. Notably, circCAMTA1 has been shown to influence AF 

progression by modulating the miR-214-3p/TGFBR1 signaling 

pathway and other pathways[90]. Similarly, circRNA_0004104 

has been identified to target pathways such as the MAPK/TGF

β signaling pathway, shedding light on the regulatory 

mechanisms underlying AF[91]. Zhang PP et al., through 

genome-wide profiling, discovered that hsa_circ_0000075 and 

hsa_circ_0082096 target the TGFβ signaling pathway 

implicated in AF pathogenesis[92]. Another recent study 

reported significant upregulation of hsa_circRNA025016 

expression in the plasma of AF patients, indicating its 

potential as a biomarker for predicting new-onset AF after 

non-extracorporeal coronary artery bypass grafting[93]. In a 

study focused on nonvalvular persistent atrial fibrillation 

(NPAF), Zhang Y et al. identified ceRNA networks associated 

with circRNAs in NPAF patients using bioinformatics analysis, 

including hsa_circRNA002085 and hsa_circRNA001321, which 

may represent novel targets for clinical AF research[94]. 

Additionally, has_circ_0006314 and hsa_circ_0055387 have 

demonstrated potential predictive value for postoperative AF

[95].

Heart Failure (HF) 
HF is a cardiac condition characterized by insufficient blood 

delivery to various organs, leading to organ damage[96]. It 

commonly arises from underlying conditions such as coronary 

heart disease, high blood pressure, cardiomyopathy, and heart 

valve disease[97, 98]. HF often presents with symptoms like 

fatigue, dyspnea, chest tightness, palpitations, insomnia, and 

coughing, and in severe cases, it can result in sudden death

[99]. Clinical treatments for HF typically involve medication 

(diuretics, ACE inhibitors, ARBs, beta-blockers, etc.) and 

surgery[100]. Despite advancements in modern medicine, 

many patients still face challenges in receiving effective 

treatment for HF[101]. Consequently, researchers are actively 

exploring novel therapeutic tools and targets, including 

lncRNAs. LncRNAs play crucial regulatory roles in the 

development and progression of HF, including the regulation 

of biological processes such as cardiomyocyte proliferation, 

apoptosis, and autophagy[102, 103]. For instance, the 

expression level of the well-known lncRNA H19 has been 

found to strongly correlate with HF severity[104, 105]. 

Additionally, upregulation of lncRNA MALAT1 expression has 

been observed after myocardial infarction, and it has been 

shown to regulate cardiomyocyte proliferation and apoptosis

[106, 107]. LncRNA NEAT1 has also been implicated in HF, as 

its upregulation can induce cardiomyocyte apoptosis and 

myocardial fibrosis[108]. Liu N et al. identified lncHrt, a 

cardiomyocyte-enriched lncRNA that influences metabolism 

and the pathophysiological mechanisms associated with HF

[109]. Furthermore, a research team from Japan discovered a 

novel lncRNA called Caren, which not only protects against HF 

by inactivating the DNA damage response and activating 

mitochondrial biosynthesis but also regulates gene translation 

and maintains cardiomyocyte homeostasis[110]. Gu Q et al. 

demonstrated that the lncRNA SOX2-OT affects ischemic HF 

by inhibiting miR-455-3p, which, in turn, mitigates the process 

CLINICAL AND TRANSLATIONAL REPORTS DOI 10.58832/ctr.2023.7.6.1
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by targeting TRAF6. These findings suggest that the 

SOX2-OT/miR-455-3p/TRAF6 axis could serve as a potential 

therapeutic target for ischemic HF[111]. 

The study of circRNAs in HF has gained considerable 

attention. One notable circRNA, circHIPK3, exhibits 

significantly high expression levels in the myocardial tissue of 

HF patients and positively correlates with the severity of 

cardiac HF[112, 113]. Furthermore, the expression level of 

circRNA cZNF292 has been associated with HF development

[114]. Upregulated circRNA cZNF292 has been implicated in 

regulating HF through processes such as apoptosis and the 

inflammatory response in cardiac myocytes[115]. 

Additionally, research has highlighted the critical role of 

circRNA-microRNA-protein networks in HF, with circRNAs 

acting as "sponges" for miRNAs, thereby modulating miRNA 

expression levels and subsequently altering the expression 

and function of miRNA downstream targets[116]. For 

instance, circHipk3 stimulates cardiomyocyte proliferation by 

enhancing the acetylation of N1ICD, thereby increasing its 

stability and inhibiting degradation[117]. Moreover, circHipk3 

functions as a sponge for miR-133a, leading to increased 

expression of connective tissue growth factor and activation 

of endothelial cells, suggesting its potential as a novel 

therapeutic target for preventing post-myocardial infarction 

HF[118]. The circRNA HRCR protects the heart from 

pathological hypertrophy and cardiac HF by targeting 

miR-223[119, 120]. Furthermore, hsa circ0062960 has been 

associated with HF, exhibiting a significant correlation with a 

key HF biomarker, serum brain natriuretic peptide[121].

Atherosclerosis (AS) 
AS is a chronic and progressive disease influenced by various 

factors, including disorders in lipid metabolism, inflammatory 

responses, apoptosis, and proliferation[122]. These biological 

processes are regulated by multiple signaling pathways 

and molecular mechanisms, includi ng the involvement of 

non-coding RNAs (ncRNAs). Recent studies have highlighted 

the significant regulatory roles of ncRNAs, such as lncRNAs 

and circRNAs, in the development and progression of 

atherosclerosis[123, 124]. These ncRNAs can impact AS 

progression by regulating various biological processes, 

including cell proliferation, apoptosis, inflammatory response, 

and extracellular matrix synthesis and degradation[125, 126]. 

Elevated expression of lncRNA H19 in AS has been shown 

to promote its development and progression by inhibiting 

vascular endothelial cell apoptosis and promoting smooth 

muscle cell proliferation and extracellular matrix synthesis[127]. 

Silencing the expression of lncRNA AK136714 has proven 

effective in reducing endothelial cell injury and inhibiting AS     

[128]. Upregulation of MALAT1 contributes to inflammatory 

responses and extracellular matrix degradation, thereby 

promoting AS development[37]. Conversely, downregulation 

of MALAT1 reduces the inflammatory response and 

extracellular matrix degradation, thus inhibiting AS progression

[129]. Furthermore, ANRIL expression positively correlates 

with the extent of AS, and this lncRNA can regulate AS by 

modulating vascular endothelial cell proliferation, apoptosis, 

inflammatory response, and oxidative stress[130-132]. In 

animal experiments, Li P et al. demonstrated that knockdown 

of the lncRNA HIF1A-AS2 or ATF2 reduced inflammation in 

AS mice[133]. Additionally, lncRNA NORAD has been found to 

significantly inhibit endothelial cell senescence, endothelial cell 

apoptosis, and AS through the NF-κB and p53-p21 signaling 

pathways and IL-8[134].

In the regulatory mechanisms of atherosclerosis (AS), several 

circRNAs have been implicated. Pu Z et al. reported the 

involvement of circACTA2, circ-SATB2, and circCCDC66 

in regulating vascular smooth muscle cell (VSMC) growth 

through miRNA sponging, thereby affecting AS formation

[135]. Moreover, circRNAs have been shown to influence 

the onset and development of AS by regulating processes 

such as apoptosis, inflammatory response, and oxidative 

stress[136]. These findings provide new insights into the 

role of circRNAs in AS and offer potential avenues for AS 

treatment. For instance, Holdt LM et al. demonstrated that 

circANRIL induced nucleolar stress and p53 activation, 

leading to apoptosis induction and proliferation inhibition, 

which are crucial cellular functions in AS[137]. Zhang X et al. 

reported that circRSF1 regulated ox-LDL-induced vascular 

endothelial cell proliferation, apoptosis, and inflammation 

through the miR-135b-5p/HDAC1 axis, suggesting its 

potential in AS diagnosis and treatment[138]. Additionally, 

Du N et al. found that circRNA_102541 was highly expressed 

in AS samples and its knockdown significantly hindered cell 

proliferation. They also discovered that circRNA_102541 

targeted the miR-296-5p/PLK1 axis, thereby participating in 

HUVEC cell apoptosis[139]. These findings contribute to our 

understanding of AS pathogenesis and provide insights into 

the potential therapeutic targets involving circRNAs. 

CLINICAL AND TRANSLATIONAL REPORTS DOI 10.58832/ctr.2023.7.6.1
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Stroke
 
Stroke refers to a condition in which blood vessels in the 

brain become blocked or ruptured, leading to insufficient 

or interrupted blood supply to the brain. This results in 

necrosis and softening of brain tissue, leading to neurological 

dysfunction[140]. Ischemic stroke and hemorrhagic stroke are 

the two common types of strokes[141]. Xiang Y et al. identified 

the overexpression of lncRNA MEG3 in ischemic stroke 

samples through RNA sequencing technology. They found 

that its downstream target, miR-424-5p, was underexpressed. 

Mouse experiments demonstrated that MEG3 accelerated 

the progression of ischemic stroke by inhibiting the target 

miR-424-5p in the affected cells[142]. In recent studies, 

MALAT1 expression was significantly upregulated in endothelial 

cells under conditions of oxygen-glucose deficiency (OGD) 

and in middle cerebral artery occlusion (MCAO) mouse models 

of stroke[143]. In clinical samples, MALAT1 expression levels 

were significantly increased in stroke patients and positively 

correlated with the severity of the stroke[144]. Subsequent 

experimental findings indicated that MALAT1 promoted 

neuronal apoptosis and inflammatory response after stroke, 

thereby exacerbating brain injury[145]. Conversely, H19 

expression levels were found to be significantly decreased 

in post-stroke rat models[146]. Overexpression of H19 

significantly reduced brain damage and promoted neuronal 

survival and recovery following stroke[147, 148]. On the other 

hand, NEAT1 expression levels were found to be upregulated 

in mouse models of stroke, and NEAT1 was found to promote 

inflammatory response and neuronal apoptosis after stroke, 

thus aggravating brain injury[149, 150]. Additionally, Bao MH 

et al. reviewed the aforementioned lncRNAs (MEG3, H19, 

and MALAT1) and discovered their potential involvement in 

neurogenesis, angiogenesis, and inflammation through gene 

regulation mechanisms such as DNA transcription, RNA folding, 

CLINICAL AND TRANSLATIONAL REPORTS DOI 10.58832/ctr.2023.7.6.1
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and methylation[151]. These findings contribute to a better 

understanding of the function and mechanisms of lncRNAs 

in ischemic stroke.

In recent years, more and more studies have shown that 

circRNA plays an important role in neuroinflammatory response 

and brain injury after stroke by regulating extracellular RNA

[152]. For example, one study discovered elevated levels of 

circTLK1 in acute ischemic stroke and demonstrated that its 

knockout resulted in the amelioration of neuronal damage 

and improvement in neurological function[153]. Chen W 

et al. found that the circUCK2/miR-125b-5p/GDF11 axis 

attenuated apoptosis in cerebral ischemia-reperfusion injury 

using cellular experiments and animal models, suggesting its 

significance as a signaling pathway in ischemic stroke[154]. 

Yang L et al. observed in animal experiments that circSCMH1 

enhanced the recovery mechanism in stroke models[155]. 

Han B et al. identified the upregulation of circHECTD1 in a 

mouse stroke model through microarray analysis. They found 

that circHECTD1 acted as an endogenous sponge for miR142, 

inhibiting miR142 activity and suppressing astrocyte activation 

through autophagy[156, 157]. Other literature suggests the 

effectiveness of circRNA 0025984 in reducing ischemic stroke 

damage and its protective effect on astrocytes through 

the miR-143-3p/TET1/ORP150 pathway[158]. Ma Z et al. 

identified four circRNAs (hsa-circ-0000607, hsa-circ-0051778, 

hsa-circ-0007850, and hsa-circ-0049637) associated with 

the immune mechanism of acute ischemic stroke, showing a 

significant positive correlation with neutrophils. These findings 

may offer new insights for stroke treatment[159]. These 

circRNAs are significantly positively correlated with neutrophils, 

which may provide new ideas for the treatment of stroke.

Aneurysm
 
Aneurysm is a condition characterized by the localized dilation 

of arterial walls, commonly found in cerebral arteries, aorta, 

renal arteries, and abdominal arteries[160]. The development of 

aneurysms can be influenced by factors such as arteriosclerosis, 

hypertension, and genetic predisposition[161, 162]. Emerging 

evidence suggests 

that lncRNAs play a significant role in the occurrence and 

progression of aneurysms. For instance, targeting the lncRNA 

HOTAIR has been shown to inhibit the proliferation and invasion 

of aneurysm cells while promoting their apoptosis[163]. Man H 

et al. demonstrated that lncRNA GASL1 was downregulated in 

patients with intracranial aneurysms 
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and that its overexpression promotes the proliferation of human 

VSMCs and inhibits TGF-β1 expression, thereby affecting the 

formation of intracranial aneurysms[164]. Another important 

lncRNA involved in aneurysms is MALAT1, which participates in 

the occurrence and development of aneurysms by regulating 

pathways such as apoptosis and vascular remodeling[165, 166]. 

Additionally, studies have suggested a potential association 

between lncRNAs NEAT1, TUG1, and aneurysm occurrence and 

development[167, 168]. These findings highlight the importance 

of lncRNAs in understanding the underlying mechanisms of 

aneurysm pathology.

Studies have shown that VSMC is one of the key factors 

triggering intracranial aneurysms[169, 170]. Recent studies 

have shed light on the role of circRNAs in regulating VSMC 

function and their potential implications for anti-cranial 

aneurysm therapies. Ding X et al. identified circRNA DOCK1 

as a key regulator of VSMCs, and through the regulation of 

the miR-409-3p/MCL1 axis, it may offer a new avenue for 

circRNA-based therapies targeting intracranial aneurysms

[171]. Another circRNA, circ_0020397, was found to be 

downregulated in intracranial aneurysms. This circRNA can 

modulate GREM1 expression in VSMCs via miR-502-5p, thereby 

influencing the pathogenesis of intracranial aneurysms[172]. 

Additionally, Teng L et al. demonstrated that hsa_circ_0021001, 

which is downregulated in the peripheral blood of patients 

with intracranial aneurysms, correlates with aneurysm 

rupture and Hunt and Hess levels. It shows promise as a 

potential biomarker for clinical diagnosis[173]. Zhang Z et al. 

explored two signaling pathways associated with intracranial 

aneurysms, namely circRNA_0079586/miR-183-5p/MPO and 

circRNA_RanGAP1/miR-877-3p/MPO[174]. These findings, 

derived from cell and animal models, highlight the potential of 

circRNAs in aneurysm research, although further clinical studies 

are needed to val

Cardiomyopathy
 
Cardiomyopathies encompass various types such as 

hypertrophic cardiomyopathy, dilated cardiomyopathy, 

restrictive cardiomyopathy, and arrhythmogenic right 

ventricular cardiomyopathy[175, 176]. The exact etiology of 

these conditions is not fully understood, but it is known that 

they can be influenced by factors including genetics, metabolic 

abnormalities, cardiac stress, infections, and toxins[177, 178]. 

Several lncRNAs have been implicated in the development 

and progression of different cardiomyopathies. For example, 

lncRNA MIAT is found to be highly expressed in hypertrophic 

cardiomyopathy and can modulate the proliferation and 

apoptosis of cardiomyocytes by regulating the expression 

of miR-24, thereby contributing to disease development

[179]. In dilated cardiomyopathy, the expression of lncRNA 

H19 is significantly upregulated, and its dysregulation can 

impact cardiomyocyte apoptosis and hypertrophy, potentially 

promoting the progression of the disease[180]. LncRNA CHRF 

has been identified as playing a crucial role in myocardial cell 

proliferation, heart development, and the pathological state 

of the myocardium. Its dysregulation is closely associated 

with the occurrence and progression of cardiomyopathy[181]. 

Another lncRNA, Bvht, is closely linked to cardiac morphology 

and development. It is involved in biological processes such 

as cardiomyocyte proliferation, differentiation, and myocardial 

pathology[182, 183]. Furthermore, lncRNA MIAT has been found 

to be highly expressed in pathological conditions like myocardial 

hypertrophy and fibrosis. Its dysregulation may contribute 

to the development and progression of cardiomyopathy 

by influencing signaling pathways related to apoptosis and 

mitochondrial function[184, 185].

CircRNAs have emerged as important regulators of heart 

development and have been implicated in the pathological 

processes of cardiovascular diseases[186]. In the context 

of hypertrophic cardiomyopathy, a study by Guo Q et al. 

identified a circRNA-associated ceRNA network, revealing that 

circRNAs such as hsa_circ_0043762, hsa_circ_0036248, and 

hsa_circ_0071269 may serve as risk factors in the development 

of hypertrophic cardiomyopathy[187]. Another investigation 

demonstrated that circRNA_000203 in cardiomyocytes can 

modulate cardiomyocyte hypertrophy by regulating the NF-kB 

signaling pathway[188]. Additionally, several other circRNAs 

have been implicated in cardiomyopathy. For instance, 

circRNA_010567 has been associated with cardiomyocyte 

apoptosis and the pathological state of the myocardium, and it 

represents a potential diagnostic and therapeutic target for 
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cardiomyopathy[118, 189]. CircRNA_100290, CircRNA_101237, 

and others are generally highly expressed in pathological 

myocardial states and may be involved in the occurrence 

and progression of cardiomyopathy, impacting processes 

such as cardiomyocyte apoptosis, myocardial fibrosis, and 

cardiomyocyte proliferation[190, 191]. 

Pericarditis
 
Pericarditis, characterized by inflammation of the pericardium, 

can manifest with symptoms such as chest pain, shortness of 

breath, fatigue, and fever[192]. In severe cases, pericarditis can 

lead to complications such as heart failure and arrhythmias

[193, 194]. Viral or bacterial infections, drug allergies, and 

autoimmune diseases are among the common causes of 

pericarditis[195]. In terms of lncRNAs, a study identified that 

lncRNA TUG1 can attenuate hypertrophy of the hypertrophic 

myocardium by targeting the mir-34a/dkk1/wnt-β-catenin 

signaling pathway[196]. These findings suggest that lncRNAs 

may contribute to the pathogenesis and progression of 

pericarditis by regulating relevant signaling pathways. 

Additionally, lncRNA MALAT1 has been found to be upregulated 

in pericarditis, and its upregulation is closely associated with 

increased inflammatory response and pericardial fibrosis[197]. 

Although there is limited research on circRNAs in pericarditis, 

studies have shown that circRNAs play important regulatory 

roles in biological processes such as inflammatory response, 

apoptosis, autophagy, and oxidative stress[198, 199]. Since 

these biological processes are also implicated in the occurrence 

and development of pericarditis, future research could explore 

the regulatory roles of circRNAs in the pathophysiological 

processes associated with pericarditis. Such investigations 

may provide new insights and strategies for the diagnosis and 

treatment of pericarditis. 

Outlook and Conclusion
 
NcRNAs, specifically lncRNAs and circRNAs, have emerged as 

valuable tools in CVD research. The dysregulation of lncRNAs 

and circRNAs has been associated with the initiation and 

progression of CVD, sparking interest in understanding their 

regulatory mechanisms within the cardiovascular system. 

Recent investigations have highlighted the involvement of 

lncRNAs and circRNAs in various biological processes critical 

to cardiovascular function, including cardiomyocyte 

proliferation, apoptosis, and autophagy, as well as the 

regulation of vascular endothelial cell function and VSMC 

proliferation and migration. Consequently, these ncRNAs 

present promising targets for the diagnosis and treatment of 

CVD. Although the precise roles of lncRNAs and circRNAs in 

cardiovascular pathogenesis remain incompletely elucidated, 

they offer novel research avenues for unraveling the intricacies 

of CVD development and progression. Further investigations 

are warranted to comprehensively explore their potential 

applications in the diagnosis and treatment of CVD. 
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