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Abstract
 
The buildup of lipid peroxides on the cell membrane is critical in the initiation of 

Ferroptosis, an iron-dependent form of controlled cell death. Ferroptosis is a type of 

cell death that varies from other types of cell death in both mechanics and 

morphology, and it holds significant promise for cancer therapy. As a result, there has 

been increasing interest in the cancer research community regarding the exploration 

and understanding of Ferroptosis in recent years. This review article aims to provide a 

solid theoretical foundation for the management of Ferroptosis in cancer. It 

accomplishes this by summarizing the processes that contribute to the development 

of Ferroptosis and outlining the underlying mechanisms of Ferroptosis in various 

types of tumors.
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FIGURE 1 
The mechanisms of Ferroptosis induction.
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Introduction
 
The concept of Ferroptosis, a novel form of cell death initially 

proposed in 2012, has captured significant attention from 

researchers in various fields. Ferroptosis has been linked not 

only to degenerative diseases, stroke, renal failure, and local 

ischemia-reperfusion injury in mammals but also to the 

development and regulation of cancer cells. Extensive 

research in modern medicine has established Ferroptosis as a 

crucial tumor suppressor mechanism, leading to substantial 

advancements in tumor biology and cancer therapy. In this 

review, we aim to consolidate the current understanding of 

the mechanisms underlying Ferroptosis and its role in different 

types of tumors by synthesizing a comprehensive body of 

literature. This collective knowledge may present new 

opportunities for clinical treatment strategies in the future, 

benefiting patients in the fight against cancer. 
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Sorafenib activates the p62-Keap1-NRF2 pathway, resulting in an increase in NRF2, which also leads to an increase in GSH and a 
reduction in ferroptosis. The p62-Keap1-NRF2 pathway plays an important role in the fight against Ferroptosis by regulating the 
NRF2-targeted genes HO1, NQO1, and FTH1. System XC-(SLC3A2 and SLC7A11) induces GSH deficiency and GPX4 inactivation via 
glutamate and cystine, increases lipid peroxide accumulation, thus contributing to Ferroptosis.



1.Mechanism of Ferroptosis
 
Generally speaking, the development of cancer is associated 

with cellular changes, including cell growth, development, 

differentiation and death[1]. Among them, Ferroptosis in cell 

death is the focus of medical research in recent years. The 

imbalance between the formation and breakdown of lipid 

reactive oxygen species (ROS) in cells causes ferroptosis[2]. 

The essence is the depletion of glutathione, the decreased 

activity of peroxidase GPX4, the decreased antioxidant 

capacity, and the accumulation of ROS, which promotes the 

occurrence of Ferroptosis[3, 4]. This process is different from 

other cell death methods at the morphological, biological and 

genetic levels[5]. Specifically, the morphological features of 

the cells include the reduction of mitochondria, increased 

membrane density, cristoid decrease or absence, and 

mitochondrial outer membrane rupture[6]. In terms of cellular 

components, it manifests as increased lipid peroxidation, 

increased ROS, and alterations in a few key genes[7]. Herein, 

we enumerate some inducers of Ferroptosis to clarify the 

mechanism of Ferroptosis.

1.1 System XC- induces Ferroptosis 
Systemic XC- is a heterodimer composed of SLC7A11 and 

SLC3A2, which is embedded on the cell membrane surface 

and plays a key role in the regulation of cellular ferritin 

deposition[8, 9]. Systemic XC-mediated cystine uptake has 

an important role in Ferroptosis[10]. Inhibition of systemic 

XC- activity inhibits cystine uptake and affects GSH 

synthesis, which in turn leads to reduced activity of the 

membrane lipid repair enzyme GPX4 and a decrease in 

cellular antioxidant capacity, inducing the development of 

Ferroptosis[11, 12], as shown in Figure 1.

1.2 Erastin induces Ferroptosis 
Erastin is a widely used inducer of ferroptosis that triggers 

the development of ferroptosis by inhibiting System 

XC-activity. This inhibition prevents the entry of cystine into 

cells, leading to the inability to synthesize glutathione (GSH) 

and reducing antioxidant capacity (Figure 2)[13, 14](Figure 

2). In a study on lung cancer, erastin was found to increase 

ROS levels, which subsequently activated p53 and further 

elevated intracellular ROS levels[15]. This process 

exacerbates the toxic and inhibitory effects of erastin on lung 

cancer cells, ultimately leading to Ferroptosis. 

Erastin-induced Ferroptosis in other types of cancer is also 

accompanied by an accumulation of intracellular ferric 

ions[16]. Furthermore, other studies have demonstrated that 

erastin enhances the sensitivity of many cancer cells to 

chemotherapeutic agents and radiation, highlighting its 

potential as a novel anti-cancer agent[17, 18].

1.3 GPX4 induces ferroptosis 
GPX4, the fourth member of the selenium-containing GPX 

family, is a core regulator of Ferroptosis[19, 20]. Studies have 

shown that some inhibitors of GPX4, such as ML162, RSL3, 

DPI compounds and FIN56, induce Ferroptosis by inhibiting 

GPX4, resulting in a decrease in cellular antioxidant capacity 

and an increase in lipid reactive oxygen species[21, 

22](Figure 2). RSL3, for example, causes Ferroptosis by 

inactivating GPX4, resulting in the accumulation of 

intracellular peroxides[23, 24]. Similarly, RSL3, ML162, and 

related compounds directly inhibit the function of GPX4 via 

covalent modifications, causing Ferroptosis without affecting 

intracellular glutathione levels[25, 26]. FIN56 causes 

ferroptosis not only by degrading GPX4, but also by binding 

to squalene synthase (SQS) and depleting CoQ10[22, 27]. 

Furthermore, another GPX4 inhibitor, FINO2, can cause 

Ferroptosis by inactivating GPX4[28, 29].
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FIGURE 2 
Small molecule and drug inducer for lipid metabolism.

Erastin inhibits the activity of System XC, which leads to the development of Ferroptosis. By deactivating GPX4, RSL3 and DPIs 
induce ferroptosis by buildup of intracellular peroxides. By attaching to squalene synthase (SQS) and depleting CoQ10, FIN56 
contributes to Ferroptosis. Statins can induce cellular Ferroptosis by depleting CoQ10 through inhibition of HMG-CoA reductase. 
Iron ion chelators contain DFO and CPX, and Ferroptosis inhibitors include Ferrostatins and Liproxstain-1.

1.4 p53 induces Ferroptosis 
p53 is an important regulator of Ferroptosis and plays a role 

in GPX4-centred Ferroptosis, acting as a tumor 

suppressor[30]. p53 is an important Ferroptosis regulator 

that plays a role in GPX4-centred Ferroptosis and acts as a 

tumor suppressor[31, 32]. Several studies have found that 

p53 prevents Ferroptosis under low ROS stress and promotes 

Ferroptosis under high oxidative stress[33, 34]. p53 enhances 

cellular sensitivity to Ferroptosis by transcriptionally 

repressing SLC7A11 and thereby inhibiting cystine uptake[35, 

36](Figure 3). In some cellular environments, Ferroptosis can 

also be adversely regulated by p53. For example, stabilization 

and restoration of wild-type p53 activity by nutlin-3 protects 

fibrosarcoma, renal carcinoma and osteosarcoma cells from 

iron death by maintaining intracellular GSH levels through a 

p53-21-dependent pathway that inhibits system XC- 

function[37]. According to Jiang L et al., p53 decreases 

cystine absorption and makes cells more susceptible to 

ferroptosis by reducing the expression of SLC7A11[38]. 

Inactivation of ALOX12 ROS-induced p53-mediated iron 

sagging was diminished, and p53-dependent tumor growth 

inhibition was removed[39].
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FIGURE 3 
The induction pathway of p53.

p53 triggers Ferroptosis, which is regulated by the lipoxygenase 
ALOX12, indirectly by down-regulating SLC7A11 expression and 
reducing cystine uptake. p53-mediated ferroptosis of the ACSL4 
non-dependent type. 

PUFA: Polyunsaturated fatty acids; PUFA-OOH: The state of peroxidation 
of PUFA.

1.5 Lipid peroxidation induces 
Ferroptosis 
The oxidative degradation of lipids in response to the loss of 

hydrogen atoms by the action of free radicals or lipid 

peroxidases, resulting in the oxidation, breakage, and 

shortening of lipid carbon chains and the production of 

cytotoxic substances that cause cellular damage, is an 

important marker of ferroptosis[40]. Zhang HL et al. 

mentioned the positive feedback axis of lipid 

peroxidation-PKCII-ACSL4 may represent a viable target for 

the therapy of ferroptosis-related disorders[41]. Ferroptosis 

in astrocytes can be accomplished by NOX4-mediated 

oxidative stress-induced lipid peroxidation impairing 

mitochondrial metabolism in Alzheimer's disease[42]. A study 

by Zhao L et al. found that in gastric cancer cells apatinib 

negatively regulated Ferroptosis through SREBP-1-mediated 

GPX4-induced lipid peroxidation[43]. 

1.6 NRF2 induces Ferroptosis 
NRF2 is a transcription factor involved in antioxidant 

activities and has been shown to be closely associated with 

Ferroptosis in recent years[44, 45]. The 

NRF2-GPX4-mediated Ferroptosis pathway is involved in the 

neuroprotective effects of dexmedetomidine in rats with 

cerebral hemorrhage[46]. A review by Dodson M et al. 

discusses that increased upregulation of NRF2 expression 

prevents Ferroptosis, while downregulation of NRF2 

expression effectively enhances the sensitivity of cancer cells 

to Ferroptosis prodrugs, suggesting that NRF2 levels 

correlate with Ferroptosis sensitivity[47]. NRF2 also inhibits 

Ferroptosis by increasing target genes associated with iron 

and ROS metabolism[48, 49]. In studies of chronic 

obstructive pulmonary disease, dihydroquercitrin 

intervention is shown to inhibit cigarette smoke 

exposure-induced Ferroptosis by modulating the NRF2 

signaling pathway[50]. Additionally, NRF2 mediates the 

antioxidant, iron and intermediate metabolic states of cells 

and is involved in Ferroptosis through the regulation of xCT 

and GPX4[47].

1.7 Sorafenib induces Ferroptosis 
Sorafenib is a new multi-targeted drug for cancer therapy, 

which has a significant anti-tumor effect as a Ferroptosis 

inducer in a variety of cancers[51, 52]. Sorafenib can promote 

Ferroptosis by blocking SLC7A11-mediated cystine import 

into cells[35, 53]. The study by Li ZJ et al. confirm that 

sorafenib and artesunate can play a combined role in the 

therapy of liver cancer, which can significantly aggravate lipid 

peroxidation and Ferroptosis in cancer cells[54]. In an animal 

study, Yuan S et al. explored the anti-fibrotic effects of 

sorafenib and found that sorafenib triggered hepatic stellate 

cell Ferroptosis via HIF-1α/SLC7A11 signaling and 

attenuated the extent of liver injury and fibrosis[55]. QSOX1 

promoted the sensitivity of hepatocellular carcinoma cells to 

sorafenib therapy by suppressing NRF2 activation and 
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induced Ferroptosis[56, 57]. Yu Y et al. reported sorafenib 

inhibited ARG2 expression in murine melanoma cells, but 

overexpressed ARG2 reduced lipid peroxidation through 

stimulating the Akt/GPX4 signaling pathway, which adversely 

controlled sorafenib-induced Ferroptosis in melanoma 

cells[58]. Other studies have also highlighted the significance 

of ATF3/Slc7a11-mediated ferroptosis as the underlying 

mechanism of sorafenib-induced cardiotoxicity[59]. 

Additionally, sorafenib has been demonstrated to enhance 

ferroptosis in thyroid cancer cells, thereby expediting the 

process of cancer cell death[60, 61].

1.8 Heat shock protein (HSPs) induced 
Ferroptosis 
HSPs serve as tumor markers and are commonly utilized in 

tumor diagnosis and differentiation[62]. HSPs can be 

categorized into various types based on their size, including 

HSP110, HSP90, HSP70, HSP60, and small molecule HSPs, all 

of which have demonstrated the ability to induce 

ferroptosis[63-65]. Furthermore, different HSPs exert distinct 

effects on ferroptosis in various diseases. HSPB1 and NCOA4 

play roles in regulating iron homeostasis and are capable of 

preventing ferroptosis induced by elevated intracellular iron 

levels[66]. Conversely, HSP90 may mitigate ferroptosis by 

inhibiting the degradation of GPX4 protein[33, 67]. 

Overexpression of HSPB1 inhibits erastin-induced iron 

uptake, while downregulation of HSPB1 expression has the 

opposite effect, thereby rendering cancer cells more 

susceptible to ferroptosis in cases where iron and HSPB1 

levels are excessively high and the HSPB1 pathway is 

downregulated[68]. 

2 Ferroptosis in different cancers 

Apoptosis, autophagy, necrosis, and other forms of cell death 

have been extensively investigated in clinical studies and 

shown to impact tumor development[69]. Ferroptosis is a 

specific process of regulated cell death led by iron-mediated 

oxidative damage and subsequent degradation of cell 

membranes[70, 71]. Increased iron buildup, free radical 

production, fatty acid availability, and lipid peroxidation are all 

important variables in the commencement of this process[72]. 

Ferroptosis promotes tumor development while also reducing 

tumor progression during tumorigenesis[73]. The vulnerability 

of various cancer cell types to ferroptosis varies greatly, and it 

significantly influences the effectiveness of chemotherapy, 

radiation, and immunotherapy. Combining therapies that 

induce ferroptosis can enhance the therapeutic outcomes of 

these treatments[12, 74, 75]. Further investigations have 

revealed that the combination of certain chemotherapeutic 

drugs with the ferroptosis-inducing agent erastin exhibits 

potent synergistic anti-tumor effects[76]. In this section, an 

overview of the potential processes of ferroptosis in different 

malignancies was provided and discussed the potential 

therapeutic implications of targeting iron dysregulation.

2.1 Breast cancer 
Ferroptosis-related genes have been demonstrated to inhibit 

proliferation and distant metastasis of breast cancer cells 

through activation of the Ferroptosis pathway, which can be 

used not only as a novel adjuvant chemotherapy for breast 

cancer, but also as a prognostic target for breast cancer 

patients[77, 78]. Li R et al. reported in the literature that 

curcumin inhibited the growth of cancer cells by inducing 

Ferroptosis in breast cancer cells[79]. Li K et al. found 

through their study that multi-enzyme active nanases could 

inhibit the anti-Ferroptosis pathway, such as GPX4 and FSP1, 

inducing significant Ferroptosis damage and thus used for 

Ferroptosis treatment of triple negative breast cancer[80]. 

Another study found that Holo-Lactoferrin triggered 

Ferroptosis in triple-negative breast cancer cells and 

improved radiation sensitivity[81]. Yang J et al. demonstrated 

that metformin synergized with sulfasalazine and systemic 

xc-inhibitors to induce iron sagging, thereby achieving 

inhibition of breast cancer cell growth[82].

2.2 Hepatocellular carcinoma 
Sorafenib is used to treat advanced hepatocellular carcinoma 
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as a first-line therapy. Gao R et al. found that YAP/TAZ in 

combination with ATF4 was able to promote resistance to 

sorafenib by inhibiting Ferroptosis[53]. PSTK has an 

important role in ferroptosis resistance in hepatocellular 

carcinoma cells, according to Chen Y et al., and its depletion 

is associated with GPX4 inactivation and disruption of GSH 

metabolism, which also increases the induction of Ferroptosis 

during targeted chemotherapy in hepatocellular 

carcinoma[83]. In a study of drug resistance mechanisms in 

hepatocellular carcinoma, Lu Y et al. demonstrate that 

Ferroptosis is regulated by the ETS1/miR-23a-3p/ACSL4 

axis[84]. Through experiments in mice, Grube J et al. found 

that Ferroptosis, which lacked the ACSL4-dependent 

process, significantly stalled the development of 

hepatocellular carcinoma[85]. Guan L et al. reported that 

miR-3200-5p regulated Ferroptosis by targeting ATF4, which 

directly affected the proliferation and metastasis of 

hepatocellular carcinoma cells[86].

2.3 Ovarian cancer 
Ferroptosis is influenced by various inducers and inhibitors, 

and the induction of drug-induced Ferroptosis in ovarian 

cancer cells represents a promising avenue for clinical 

treatment[74]. PARP inhibitors have been shown to promote 

ferroptosis by inhibiting SLC7A11 and are used in 

combination with ferroptosis inducers (FINs) for the 

treatment of ovarian cancer[87]. The binding of p14ARF to 

the transcription factor NRF2 inhibits NRF2-mediated 

transcriptional activity of SLC7A11, leading to the induction 

of ferroptosis and exerting an inhibitory effect on 

tumorigenesis[88]. You Y et al. developed a scoring system 

based on Ferroptosis-related genes in ovarian cancer, which 

can predict the correlation between Ferroptosis and tumor 

progression, as well as distant metastasis[89]. Jing T et al. 

reported that a specific dose of CMP induces ferroptosis in 

ovarian cancer cells, thereby demonstrating its potential as 

an antitumor therapy approach[90]. 

2.4 Colorectal cancer 
Tagitinin C, a new ferroptosis inducer, causes ferroptosis in 

colorectal cancer cells by activating the ER stress-mediated 

PERK-NRF2-HO-1 signaling pathway. When coupled with 

erastin, it has a synergistic anti-tumor effect[91, 92]. 

Cetuximab is a common targeted therapeutic agent for 

colorectal cancer[93]. In mouse studies, Yang J et al. 

discovered that cetuximab can suppress the Nrf2/HO-1 

pathway and enhance RSL3-induced Ferroptosis in KRAS 

mutant CRC cells via activation of p38 MAPK, suggesting the 

potential for combination therapy[94]. Apatinib, an orally 

administered small molecule anti-angiogenic inhibitor, is a 

mainstay treatment for advanced colorectal cancer[95]. It has 

been found that apatinib increases iron and ROS levels in 

colorectal cancer cells by targeting ELOVL6/ACSL4, thereby 

promoting the mechanism of ferroptosis[96, 97].

2.5 Prostate cancer 
Researchers have found that some Ferroptosis inducers, such 

as erastin and RSL3, when combined with conventional 

anticancer drugs, can induce ROS production in prostate 

cancer cells, which can significantly suppress the growth and 

development process of cancer cells and can achieve 

effective anti-tumor effects[24, 98]. Kim KS et al. reported 

that ferumoxytol-mediated Ferroptosis could enhance the 

anti-cancer effect of NK cells in prostate cancer with 

significant tumor volume regression[99]. According to Cheng 

L et al., overexpression of SGK2 hinders ferroptosis and 

facilitates metastasis in prostate cancer by acting on the 

Thr-24 and Ser-319 sites of FOXO1. This mechanism causes 

FOXO1 to be translocated from the nucleus to the cytoplasm, 

thereby alleviating the inhibitory effect of FOXO1 on GPX4. 

These findings suggest that targeting this pathway could 

serve as a novel therapeutic strategy for metastatic prostate 

cancer[100].

2.6 Gastric cancer 
An increasing number of studies are focusing on the role of 

ferroptosis and its associated non-coding RNAs (ncRNAs) in 

the development, drug resistance, and prognosis of gastric 

cancer[101, 102]. For instance, long non-coding RNAs 

(lncRNAs) such as A2M-AS1 and C2orf27A have been found 

to target ferroptosis-related genes, modulate immune cells, 

and participate in the immunotherapy of gastric cancer[103, 

104]. The miR-375/SLC7A11 axis has been shown to 

stimulate cellular ferroptosis and reduce the stem cell 

population in gastric cancer cells[105]. By modulating the 

miR-103a-3p/GLS2 axis, rhodopsin methyl ether 

8-O--glucopyranoside causes ferroptosis in gastric cancer 

cells, increasing their susceptibility to chemotherapeutic 
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drugs[106]. Cisplatin and paclitaxel promote the secretion of 

miR-522 by gastric cancer cells through activation of the 

USP7/hnRNPA1 axis. This, in turn, inhibits ALOX15 and 

reduces lipid-ROS accumulation, thereby inhibiting 

ferroptosis and resulting in decreased chemosensitivity[107].

2.7 Pancreatic cancer 
Ductal adenocarcinoma of the pancreas is the primary type 

of pancreatic cancer, and its cells are susceptible to 

ferroptosis[108]. Sulfasalazine, which is associated with 

Ferroptosis, can be binned in combination with gemcitabine 

and sorafenib in the treatment of clinical pancreatic ductal 

adenocarcinoma[109]. MMRi62, an antitumor drug from the 

quinoline class, induces cell death in pancreatic ductal 

adenocarcinoma cells through ferroptosis, a process 

characterized by increased autophagy, elevated reactive 

oxygen species levels, and lysosomal degradation of NCOA4 

and FTH1[110]. Yang J et al. discussed the association 

between pancreatic cancer and gemcitabine resistance and 

proposed the potential of combining NRF2 inhibitors with 

ferroptosis inducers to eliminate gemcitabine-resistant cells. 

Among them, HSPA5 controls ferroptosis in pancreatic cancer 

to prevent gemcitabine resistance, while FBXW7 enhances 

the cytotoxic effects of gemcitabine by FBXW7-NR4A1-SCD1 

pathway, promoting Ferroptosis and apoptosis[111]. 

Furthermore, other studies have demonstrated that 

NUPR1-mediated LCN2 expression inhibits the development 

of ferroptosis by reducing iron accumulation and oxidative 

damage in ductal adenocarcinoma of the pancreas[112, 113]. 

2.8 Renal cell cancer 
GPX4 plays a critical role as a key regulator in the ferroptosis 

signaling pathway in renal cell carcinoma (RCC) cells, and its 

knockdown leads to increased lipid peroxidation in these 

cells[114]. Both SLC7A11 and GPX4, two 

ferroptosis-associated proteins, are highly expressed in renal 

cancer and are closely associated with various clinical 

parameters such as tumor size, distant metastasis, prognosis, 

and clinical stage[115, 116]. Several studies have 

demonstrated that KDM5C mutations in renal cell carcinoma 

can modulate glycogen metabolism and counteract 

ferroptosis[117]. Additionally, the article by Lu Y et al. 

highlights the close relationship between KLF2 and GPX4, 

suggesting that KLF2 can regulate ferroptosis through GPX4, 

thereby inhibiting the growth of renal clear cell carcinoma 

cells[114]. 

2.9 Melanoma 
The upregulation of miR-21-3p has been found to impact 

IFN-γ-induced ferroptosis in melanoma[118]. CAMKK2 

protects against ferroptosis by activating the AMPK-NRF2 

pathway, presenting a potential therapeutic approach for 

melanoma treatment[119]. Yang Y et al. reported that 

knockdown of NEDD4 increased the protein levels of 

VDAC2/3 and enhanced the sensitivity of melanoma cells to 

erastin. Moreover, FOXM1 suppresses ferroptosis in 

melanoma cells by modulating NEDD4 expression and 

VDAC2/3 degradation[120]. SREBP2, a transcription factor 

crucial in lipid metabolism, stimulates the transcription of the 

iron transporter transferrin, resulting in lower reactive oxygen 

species and lipid peroxidation and giving resistance to 

ferroptosis inducers[121-123]. Luo M et al. mentioned that 

miR-137 regulated erastin and RSL3-induced melanoma 

Ferroptosis, inhibiting lipid peroxidation and iron 

accumulation in Ferroptosis, a process that involves 

glutamine catabolism[124].

2.10 Cholangiocarcinoma 
NDRG2 has been identified as a regulator of ferroptosis in 

cholangiocarcinoma cells, inhibiting tumor growth and 

increasing the sensitivity of radiotherapy[125-127]. Yao X et 

al. established a prognostic model for cholangiocarcinoma 

using public databases, which included four 

ferroptosis-related genes: ACSL4, IREB2, NFE2L2, and 

TP53[128]. The IDH1 mutation has been identified as a 

potential therapeutic target for cholangiocarcinoma[129, 

130]. Su L et al. experimentally demonstrated that in 

cholangiocarcinoma, the IDH1 mutation sensitizes cells to 

erastin-induced ferroptosis as a mechanism to inhibit tumor 

progression[131]. Lei S et al. reported that LINC00976 

regulates cholangiocarcinogenesis and metastasis and 

inhibits ferroptosis through the regulation of the 

miR-3202/GPX4 axis[132]. Zhu Z et al. explored that By 

boosting ferroptosis and proteasomal degradation of GPX4, 

the tumor suppressor FBXO31 increases the susceptibility of 

cholangiocarcinoma cells to cisplatin (CDDP)[133].
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2.11 Thyroid cancer 
Sorafenib is a new multi-targeted oral medication for the 

treatment of malignancies that has been demonstrated to 

accelerate the Ferroptosis of thyroid cancer cells[134, 135]. 

Wang HH et al. reported Ferroptosis was reduced in thyroid 

cancer cells by Circ 0067934 via miR-545-3p/SLC7A11 

signaling, a process that could serve as a potential direction 

for thyroid cancer[136]. In the study of Ferroptosis-related 

genes, Wang Y et al. found that AKR1C3 was associated with 

the prognosis of thyroid cancer and that knockdown of this 

gene significantly enhanced the growth of thyroid cancer 

cells[137]. Ji FH et al. demonstrated through cellular assays 

that in thyroid cancer, FTO suppressed cancer progression by 

downregulating SLC7A11 expression through 

Ferroptosis[138]. Besides, ALKBH5 combined with 

m6A-TIAM1-Nrf2/HO-1 axis induced Ferroptosis as a way to 

inhibit thyroid cancer progression[139].

2.12 Glioblastoma 
Two Ferroptosis-related genes, GPX4 and SLC7A11, were 

found to be upregulated in glioblastoma, which might be 

associated with the development and progression of 

glioblastoma[140, 141]. The NRF2 pathway can inhibit 

glioblastoma iron death by enhancing the cystine/glutamate 

reverse transporter System-Xc[142]. The first-line therapeutic 

agent for glioblastoma (TMZ) also selectively induces glioma 

stem cell Ferroptosis[143, 144]. The NF-κb pathway was 

mentioned in the literature of Li S et al. to inhibit 

RSL3-induced Ferroptosis in glioblastoma cells, which could 

be a potential target for clinical chemoradiotherapy[145]. 

COPZ1 is a crucial regulator of iron metabolism, and its 

deletion causes NCOA4-mediated autophagy and 

Ferroptosis in glioblastoma cells, according to Zhang Y et 

al[146].

2.13 Cervical cancer 
The HSPB1 pathway plays a role in inhibiting erastin-induced 

ferroptosis in cervical cancer cells by reducing the increase in 

iron and ROS levels[68]. Cisplatin treatment activates 

macrophages through inducing ferroptosis in cervical cancer, 

leading to effective tumor cell killing[147]. Propofol and 

paclitaxel exhibit synergistic anticancer effects and induce 

ferroptosis in cervical cancer cells[148]. CircLMO1 promotes 

ferroptosis by upregulating the expression of ACSL4 in 

cervical cancer, while overexpression of miR-4291/low 

expression of ACSL4 reverses this process[149]. Oleanolic 

acid-promoted ACSL4-dependent Ferroptosis could be a 

new approach for clinical therapy of cervical cancer[150].

Conclusion

Currently, we have gained a preliminary understanding of the 

characteristics and mechanisms of ferroptosis. Through 

numerous examples, we have illustrated the relationship 

between ferroptosis and cancer and explored treatment 

strategies involving ferroptosis in clinical cancers. However, 

researches are required to further delve deeper into the 

specific connections between ferroptosis and cancer cells.
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